
 Interchange: Interchange Back−Office

Table of Contents

1. AKOPIA INTERCHANGE TM BACK−OFFICE..1

2. TRACKING AND BACK−END ORDER ENTRY...3
2.1. ASCII Backup Order Tracking...3
2.2. Database Tracking..3
2.3. Custom Order Routing..4

3. ADMINISTERING AKOPIA INTERCHANGE...9
3.1. Starting, Stopping, and Re−starting the Servers...9
3.2. UNIX and INET Modes..10
3.3. User Reconfiguration..10
3.4. Making the Product Database...11
3.5. Updating Individual Records..11
3.6. Expiring Sessions..11
3.7. Administrator Permissions..12
3.8. Administrators..12
3.9. Administrators: Edit Affiliates..13
3.10. Direct Table Edit...13
3.11. Direct Table Edit: Select for Table Edit...13
3.12. File Transfer..13
3.13. Import/Export..13
3.14. Logout...14
3.15. Meta Field Information...14

4. INTERCHANGE SECURITY...15
4.1. SSL Support..15
4.2. Administrative Pages..15
4.3. Controlling Access to Certain Pages...16

5. USERTAG REFERENCE..17
5.1. email..17
5.2. email_raw..17
5.3. loc..18

 Interchange: Interchange Back−Office

i

 Interchange: Interchange Back−Office

ii

1. AKOPIA INTERCHANGE TM BACK−OFFICE
Akopia Interchange is the industry's most widely distributed and implemented open source e−commerce
platform. This document describes how to administer a commerce site with Interchange's back−office
functionality, and discusses site management and security.

1. AKOPIA INTERCHANGE TM BACK−OFFICE 1

 Interchange: Interchange Back−Office

2 1. AKOPIA INTERCHANGE TM BACK−OFFICE

2. TRACKING AND BACK−END ORDER ENTRY
Interchange allows the entry of orders into a system through one of several methods. The
AsciiBackend capability allows submission of parameters to an external order entry script. Support for
SQL allows the entry of orders directly into an SQL database. Orders can be written to an ASCII file. They
can be formatted precisely for e−mail−based systems. The orders can be placed in a DBM file. Finally,
embedded Perl allows completely flexible order entry, including real−time credit card verification and
settlement.

2.1. ASCII Backup Order Tracking

If AsciiTrack is set to a legal file name (based in VendRoot unless it has a leading "/"). A copy of the
order is saved and sent in an e−mail.

If the file name string begins with a pipe "|," a program will be run and the output "piped" to that program.
This allows easy back−end entry of orders with an external program.

2.2. Database Tracking

Once the order report is processed, the order is complete. Therefore, it is the ideal place to put Interchange
TM tags that make order entries in database tables.

A good model is to place a single record in a database summarizing the order and a series of lines that
correspond to each line item in the order. This can be in the same database table. If the order number itself is
the key for the summary, a line number can be appended to the order number to show each line of the order.

The following would summarize a sample order number S00001 for part number 00−0011 and 99−102:

 code order_number part_number quantity price shipping tax
 S00001 S00001 3 2010 12.72 100.50
 S00001−1 S00001 00−0011 2 1000 UPS yes
 S00001−2 S00001 99−102 1 10 UPS yes

Fields can be added where needed, perhaps with order status, shipping tracking number, address, customer
number, or other information.

The above is accomplished with Interchange's [import] tag using the convenient NOTES format:

 [set import_status]
 [import table=orders type=LINE continue=NOTES]

 code: [value mv_order_number]
 order_number: [value mv_order_number]
 quantity: [nitems]
 price: [subtotal noformat=1]
 shipping: [shipping noformat=1]
 tax: [salestax noformat=1]

 [/import]

 [item−list]
 [import table=orders type=LINE continue=NOTES]

2. TRACKING AND BACK−END ORDER ENTRY 3

 code: [value mv_order_number]−[item−increment]
 order_number: [value mv_order_number]
 quantity: [item−quantity]
 price: [item−price noformat=1]
 shipping: [shipping−description]
 tax: [if−item−field nontaxable]No[else]Yes[/else][/if]

 [/import][/item−list]

2.3. Custom Order Routing

Akopia Interchange can send order emails and perform custom credit card charges and/or logging for each
item. The Route directive is used to control this behavior, along with the mv_order_route item attribute
and mv_order_route form variable.

Routes are established with the Route directive, which is similar to the Locale directive. Each route is like
a locale, so that key−value pairs can be set. Here is an example setting:

 Route VEN pgp_key 0x67798115
 Route VEN email orders@akopia.com
 Route VEN reply service@akopia.com
 Route VEN encrypt 1
 Route VEN encrypt_program "/usr/bin/pgpe −fat −q −r %s"
 Route VEN report etc/report_mail

This route would be used whenever the value VEN was contained in the form variable mv_order_route.

The last route that is defined provides the defaults for all other routes. For example, if
encrypt_program is set there, then the same value will be the default for all routes.

The attributes that can be set are:

attach

Determines whether the order report should be attached to the main order report e−mail. This is useful if
certain items must be printed separately from others, perhaps for FAX to a fulfillment house.

counter

The location of a counter file which should be used instead of OrderCounter for this route. It will
generate a different value for mv_order_number for the route.

credit_card

Determines whether credit card encryption should be done for this order. Either this or encrypt should
always be set.

cybermode

If this is set, enables CyberCash for the route. Variables can also be set for CYBER_CONFIGFILE,
CYBER_SECRET, and all other normal CYBERCASH variables. For example:

 Interchange: Interchange Back−Office

4 2.3. Custom Order Routing

 Route VEN cybermode mauthonly
 Route VEN CYBER_CONFIGFILE config/vendor1_cfg
 Route VEN CYBER_VERSION 3.2

email

The email address(es) where the order should be sent. Set just like the MailOrderTo directive, which is
also the default.

encrypt

Whether the entire order should be encrypted with the encrypt_program. If credit_card is set, the credit
card will first be encrypted, then the entire order encrypted.

encrypt_program

The encryption program incantaton which should be used. Set identically to the
EncryptProgram directive, except that %s will be replaced with the pgp_key. Default is pgpe −fat
−r %s.

errors_to

Sets the Errors−To: e−mail header so that bounced orders will go to the proper address. Default is the
same as MailOrderTo.

increment

Whether the order number should be incremented as a result of this result. Default is not to increment, as the
order number should usually be the same for different routes within the same customer order.

individual_track

A directory where individual order tracking files will be placed. The file name will correspond to the value of
mv_order_number. This can be useful for batching orders via download.

individual_track_ext

The extension that will be added to the file name for individual_track. Must contain a period (.), if
that is desired.

 individual_track_ext .pgp

pgp_cc_key

The PGP key selector that is used to determine which public key is used for encryption of credit cards only.
With PGP 5 and 6, see appropriate values by using the command pgpk −l.

pgp_key

The PGP key selector that is used to determine which public key is used for encryption. If pgp_cc_key is
set, that key will be used for credit card encryption instead of pgp_key. With PGP 5 and 6, see appropriate
values by using the command pgpk −l.

 Interchange: Interchange Back−Office

2.3. Custom Order Routing 5

profile

The custom order profile which should be performed to check the order. If it fails, the route will not be
performed. See OrderProfile and mv_order_profile.

receipt

The receipt page that should be used for this routing. This only applies if supplant is set for the route.

report

The report page that should be used for this routing. If attach is defined, the contents of the report will be
placed in a MIME attachment in the main order report.

reply

The Reply−To header that should be set. Default is the same as email.
If there are only word characters (A−Za−z0−9 and underscore), it describes an Interchange variable name
where the address can be found.

supplant

Whether this route should supplant the main order report. If set, the AsciiTrack operation will use this
route and the normal Interchange order e−mail sequence will not be performed.

track

The name of a file which should be used for tracking. If the supplant attribute is set, the normal order
tracking will be used as well.

track_mode

A number representing the mode to change either track or individual_track files.

An individual item routing causes all items labeled with that route to be placed in a special sub−cart that will
be used for the order report. This means that the [item−list] LIST [/item−list] will only contain
those items, allowing operations to be performed on subsets of the complete order.

Here is an example of an order routing:

 Route HARD pgp_key 0x67798115
 Route HARD email hardgoods@akopia.com
 Route HARD reply service@akopia.com
 Route HARD encrypt 1
 Route HARD encrypt_program "/usr/bin/pgpe −fat −q −r %s"
 Route HARD report etc/report_mail

 Route SOFT email ""
 Route SOFT profile create_download_link
 Route SOFT empty 1

 Route main cybermode mauthonly
 Route main CYBER_VERSION 3.2

 Interchange: Interchange Back−Office

6 2.3. Custom Order Routing

 Route main CYBER_CONFIGFILE etc/cybercash.cfg
 Route main pgp_key 0x67798115
 Route main email orders@akopia.com
 Route main reply service@akopia.com
 Route main encrypt 1
 Route main encrypt_program "/usr/bin/pgpe −fat −q −r %s"
 Route main report etc/report_all

To tell Interchange that order routing is in effect, the variable mv_order_route is set on the final order
submission form:

 <INPUT TYPE="hidden" NAME="mv_order_route" VALUE="main">

To set the order routing for individual items, some method of determining their status must be made and the
mv_order_route attribute must be set. This could be set at the time of the item being placed in the basket,
or have a database field called goods_type set to the appropriate value. The following example uses a Perl
routine on the final order form:

[perl arg=carts interpolate=1]
 my $string = <<'EOF';
[item−list][item−code] [item−field goods_type]
[/item−list]
EOF
 my @items;
 my %route;
 @items = grep /\S/, split /\n+/, $string;
 for(@items) {
 my ($code, $keycode) = split /\t/, $_;
 $route{$code} = $keycode;
 }
 my $cart = $Carts−>{'main'};
 my $item;
 foreach $item (@{ $Carts−>{'main'} }) {
 $item−>{mv_order_route} = $route{$item−>{'code'}} || undef;
 }
 return '';
[/perl]

Now the individual items are labeled with a mv_order_route value which causes their inclusion in the
appropriate order routing.

Upon submission of the order form, any item labeled HARD will be accumulated and sent to the e−mail
address hardgoods@akopia.com, where the item will be pulled from inventory and shipped.

Any item labeled SOFT will be passed to the order profile create_download_link, which will place it
in a staging area for customer download. (This would be supported by a link on the receipt, possibly by
reading a value set in the profile).

The main order routing will use CyberCash to charge the order, and will be completely encrypted for
e−mailing.

 Interchange: Interchange Back−Office

2.3. Custom Order Routing 7

 Interchange: Interchange Back−Office

8 2.3. Custom Order Routing

3. ADMINISTERING AKOPIA INTERCHANGE
Some utilities are supplied with Interchange and are located in the VendRoot/bin directory:

 compile_link Compiles an Interchange vlink or tlink CGI link
 dump Dumps the session file for a particular catalog
 expire Expires sessions for a particular catalog
 expireall Expires all catalogs
 offline Does offline build of the database(s)
 update Does in−place update of the database(s)
 makecat Make catalog

Some example scripts for other functions are in the eg/ directory of the software distribution.

Some thought should be given to where the databases, error logs, and session files should be located,
especially on an Internet Service Provider (ISP) that might have multiple users sharing an Interchange server.
In particular, it is recommended that all of the session files and logs be put in a directory that is not writable
by the user. If the directory or file is corrupted, the catalog may crash.

To test the format of user catalog configuration files before restarting the server, perform the following test
(from VendRoot):

 bin/interchange −test

This will check all configuration files for syntax errors, which might otherwise prevent a catalog from
loading. Once a catalog configures properly, user reconfiguration will not crash it, but cause an error. It must
be loaded when the server is started.

3.1. Starting, Stopping, and Re−starting the Servers

The following commands need to have VENDROOT replaced with the main directory where Interchange is
installed. If /usr/local/interchange is the site's Interchange base directory, the start command would be:

/usr/local/interchange/bin/interchange.

Do a perldoc VENDROOT/bin/interchange for full documentation.

To start the server with default settings:

 VENDROOT/bin/interchange

It is recommended to issue a restart, otherwise the server will not run anew if a server is already running.

 VENDROOT/bin/interchange −restart

Assuming the server starts correctly, the names of catalogs as they are configured will be displayed, along
with a message stating the process ID it is running under.

To re−start the server:

 VENDROOT/bin/interchange −restart

3. ADMINISTERING AKOPIA INTERCHANGE 9

−r is the same as −restart.

This is typically done to force Interchange to re−read its configuration. A message will be displayed stating
that a TERM signal has been sent to the process ID the server is running under. This information is also sent to
/usr/local/interchange/error.log. Check the error.log file for confirmation that the server has restarted properly.

To stop the server:

 VENDROOT/bin/interchange −stop

A message will be displayed stating that a TERM signal has been sent to the process ID the server is running
under. This information is also sent to /usr/local/interchange/error.log.

Because processes waiting for selection on some operating systems block signals, they may have to wait for
HouseKeeping seconds to stop. The default is 60.

To terminate the Interchange server with prejudice, in case it will not stop, set:

 VENDROOT/bin/interchange −kill

3.2. UNIX and INET Modes

Both UNIX−domain and INET−domain sockets can be used for communication. INET domain sockets are
useful when more than one Web server, connected via a local−area network (LAN), is used for accessing an
Interchange server.

IMPORTANT NOTE: When sending sensitive information like credit card numbers over a network, always
ensure that the data is secured by a firewall, or that the Interchange server runs on the same machine as any
SSL−based server used for encryption.

If only running a site with one method of communication, use the −i and −u flags.

 # Start only in UNIX mode
 VENDROOT/bin/interchange −r −u

 # Start only in INET mode
 VENDROOT/bin/interchange −r −i

3.3. User Reconfiguration

The individual catalogs can be reconfigured by the user by running the [reconfig] support tag. This
should be protected by one of the several forms of Interchange authentication, preferably by HTTP basic
authorization. See RemoteUser.

Use reconfigure from the command line (as the Interchange user) with:

 VENDROOT/bin/interchange −reconfig <catalog>

It is easy to manually reconfigure a catalog as an administrator. Interchange simply looks for a file
etc/reconfig (based in the Interchange software directory) at HouseKeeping time. If it finds a script
name that matches one of the catalogs, it will reconfigure that catalog.

 Interchange: Interchange Back−Office

10 3.2. UNIX and INET Modes

3.4. Making the Product Database

The DBM product databases can be built off−line with the offline command. The directory to be used for
output is specified either on the command line with the −d option, or is taken from the
catalog.cfg directive OfflineDir; offline in the catalog directory by default. The directory must exist.
The source ASCII files should be present in that directory, and the DBM files are created there. Existing files
will be overwritten.

 offline −c catalog [−d offline_dir]

Do a perldoc VENDROOT/bin/offline for full documentation.

3.5. Updating Individual Records

If a site has a very large DBM database that takes time to build, consider using the bin/update script to
change just one field in a record, or to add from a corrections list.

The following updates the products database price field for item 19−202 with the new value 25.00

 update −c catalog −k 19−202 −f price 25.00

More than one field can be updated on a single command line.

 update −c catalog −k 19−202 −f price −f comment 25.00 "That pitchfork couple"

The following takes input from file, which must be formatted exactly like the original database and
adds/corrects any records contained therein.

 update −c catalog −i file

Invoke the command without any arguments for a usage message describing the options.

3.6. Expiring Sessions

If a site has DBM capability and Interchange is using it to store the sessions, periodically expire old sessions
to keep the session database file from growing too large.

 expire −c catalog

There is also an expireall script which reads all catalog entries in interchange.cfg and runs
expire on them.

The expire script accepts a −r option which tells it to recover lost disk space.

On a UNIX server, add a crontab entry such as the following:

 # once a day at 4:40 am
 40 4 * * * perl /usr/local/interchange/bin/expireall −r

Interchange will wait until the current transaction is finished before expiring, so that this can be done at any
time without disabling Web access. Any search paging files for the affected session (kept in ScratchDir)

 Interchange: Interchange Back−Office

3.4. Making the Product Database 11

will be removed as well.

If not running DBM sessions, a Perl script can be used to delete all files not modified in the last one or two
days. The following will work if given an argument of the session directory or session files:

 #!perl
 # expire_sessions.pl −− delete files 2 days old or older

 my @files;
 my $dir;
 foreach $dir (@ARGV) {
 # just push files on the list
 if (−f $dir) { push @files, $_; next; }

 next unless −d $dir;

 # get all the file names in the directory
 opendir DIR, $dir or die "opendir $dir: $!\n";
 push @files, (map { "$dir/$_" } grep(! /^\.\.?$/, readdir DIR)) ;
 }

 for (@files) {
 unless (−f $_) {
 warn "skipping $_, not a file.\n";
 next;
 }
 next unless −M $_ >= 2;
 unlink $_ or die "unlink $_: $!\n";
 }

It would be run with a command invocation like:

 perl expire_sessions.pl /usr/local/interchange/catalogs/construct/session

Give it multiple directory names, if there is more than one catalog.

This script can be adjusted or refined as needed. Refinements might include reading the file to "eval" the
session reference and expire only customers who are not members.

3.7. Administrator Permissions

Select which operations each administrator can perform in the back office. Each section of the back office
can be restricted with fine−grained control. An administrator can be given access to view the list of all orders,
for instance, but not allowed to view details. Access to the rows of Interchange's internal tables can also be
restricted on a per−table basis for each administrator.

3.8. Administrators

The Access Manager allows an administrator to create user accounts or groups of users and restrict the use of
certain features. This feature is especially useful if a company has employees that need the ability to check
orders, but not change Web content. Note that, by default, users in the back office are stored and managed
separately from customer login accounts. Users can have permissions granted on an individual basis, or by
group. If a user is a "super−user," all other permissions settings will be ignored and the user will be allowed
to do anything.

 Interchange: Interchange Back−Office

12 3.7. Administrator Permissions

3.9. Administrators: Edit Affiliates

Affiliates have the following attributes:

"Affiliate ID" is displayed in the order and traffic statistics along with the orders and traffic they produce.

"Affiliate Name" is the name of the affiliate.

"Campaigns" can be used to track traffic from advertising campaigns.

"Join_date" can be used to keep track of when the affiliate signed up.

"URL" is used, if present, to redirect visitors coming from this affiliate to a special home page just for visitors
from that affiliate's site. This should not be the URL of the Affiliate's home site.

"Timeout delay" can be used to specify that orders attributed to this affiliate must happen within a certain
amount of time from the time they were referred to the site by the affiliate. Measured in seconds.

3.10. Direct Table Edit

Edit any of Interchange's internal tables. Select a table to edit, or search a table for selected rows to edit.

3.11. Direct Table Edit: Select for Table Edit

Having selected a table to edit, a new row can be added, an existing row edited, all rows edited
spreadsheet−style, or a row deleted.

3.12. File Transfer

Transfer pages, templates, and configuration files to and from the Interchange installation. Select Pages to
transfer files that will be visible to site visitors. Select catalog.cfg to edit the configuration file for the
store. Upload (send a file to the server), download (send a file from the server to a computer), view, or
edit available files.

3.13. Import/Export

Akopia Interchange makes it easy to import and export data to and from a commerce Web site.

Use Database Upload to import a tab delimited database of all product information to Interchange to
make set−up faster and easier. Database Download does just the opposite, allowing data to be
downloaded from Interchange.

Use Layout Upload to upload a site's layout information. Use C>Layout Download> to download a site's
layout information.

 Interchange: Interchange Back−Office

3.9. Administrators: Edit Affiliates 13

3.14. Logout

This feature will only be useful if there are multiple users in the Access Manager. When logout is clicked,
a user will be asked to log in again. If logout is pressed in error, the user must log in again.

3.15. Meta Field Information

Akopia Interchange can store meta information for selected columns of tables in a site's database. This meta
information is used when the user interacts with the database. For example, the meta informaton for a Hide
Item field might specify that a checkbox be displayed when the user edits that field, since the only
reasonable values are on and off. Or, the meta information might specify a filter on data entered for a
Filename field which makes sure that the characters entered are safe for use in a filename.

Widget type specifies the HTML INPUT tag type to use when displaying the field in, say, the item editor.

Width and Height only apply to some of the Widget type options, for instance the Textarea widget.

Label is displayed instead of the internal column name. For example, the category column of the
products table might have a label of Product Category.

Help is displayed below the column label, and helps describe the purpose of the field to the user.

Help url can be used to link to a page giving more information on the field.

Lookup can be used when a field is acting like a foreign key into another table. In that case, use some sort of
select box as the widget type, and if referencing multiple rows in the destination table, use a multi select box,
with colons_to_null as the pre_filter, and :: as the lookup_exclude.

Filter and pre_filter can be used to filter data destined for that field or data read from that field,
respectively.

 Interchange: Interchange Back−Office

14 3.14. Logout

4. INTERCHANGE SECURITY

4.1. SSL Support

Akopia Interchange has several features that enable secure ordering via SSL (Secure Sockets Layer). Despite
their mystique, SSL servers are actually quite easy to operate. The difference between the standard HTTP
server and the SSL HTTPS server, from the standpoint of the user, is only in the encryption and the
specification of the URL; https: is used for the URL protocol specification instead of the usual http:
designation.

IMPORTANT NOTE: Interchange attempts to perform operations securely, but no guarantees or warranties
of any kind are made! Since Interchange comes with Perl source, it is possible to modify the program to
create security problems. One way to minimize this possibility is to record digital signatures, using MD5 or
PGP, of interchange, interchange.cfg, and all modules included in Interchange. Check them on a
regular basis to ensure they have not been changed.

Interchange uses the SecureURL directive to set the base URL for secure transactions, and the
VendURL directive for normal non−secure transactions. Secure URLs can be enabled for forms through a
form action of [process−target secure=1]. An individual page can be displayed via SSL with
[page href=mvstyle_pagename secure=1]. A certain page can be set to be always secure with
the AlwaysSecure catalog.cfg directive.

Interchange incorporates additional security for credit card numbers. The field
mv_credit_card_number will not ever be written to disk.

To enable automated encryption of the credit card information, the directive CreditCardAuto needs to be
defined as Yes. EncryptProgram also needs to be defined with some value, one which will, hopefully,
encrypt the number. PGP is now recommended above all other encryption program. The entries should look
something like:

 CreditCardAuto Yes
 EncryptProgram /usr/bin/pgpe −fat −r sales@company.com

See CreditCardAuto for more information on how to set the form variables.

4.2. Administrative Pages

With Akopia Interchange's GlobalSub capability, very complex add−on schemes can be implemented with
Perl subroutines. And with the new writable database, pages that modify the catalog data can be made. If a
page is marked as an AdminPage, only the catalog administrator may use it. See MasterHost,
RemoteUser, and Password.

In addition, any Interchange page subdirectory can be protected from access by anyone except the
administrator if a file called '.access' is present and non−zero in size.

4. INTERCHANGE SECURITY 15

4.3. Controlling Access to Certain Pages

If the directory containing the page has a file .access and that file's size is zero bytes, access can be gated
in one of several ways.

1. If the file .access_gate is present, it will be read and scanned for page−based access. The file
has the form:

 page: condition
 *: condition

The page is the file name of the file to be controlled (the .html extension is optional). The condition is
either a literal Yes/No or Interchange tags which would produce a Yes or No (1/0 work just fine, as do
true/false).
The entry for * sets the default action if the page name is not found. If pages will be allowed by default, set it
to 1 or Yes. If pages are to be denied by default in this directory, leave blank or set to No. Here is an
example, for the directory controlled, having the following files:

 −rw−rw−r−− 1 mike mike 0 Jan 8 14:19 .access
 −rw−rw−r−− 1 mike mike 185 Jan 8 16:00 .access_gate
 −rw−rw−r−− 1 mike mike 121 Jan 8 14:59 any.html
 −rw−rw−r−− 1 mike mike 104 Jan 8 14:19 bar.html
 −rw−rw−r−− 1 mike mike 104 Jan 8 14:19 baz.html
 −rw−rw−r−− 1 mike mike 104 Jan 8 14:19 foo.html

The contents of .access_gate:

 foo.html: [if session username eq 'flycat']
 Yes
 [/if]
 bar: [if session username eq 'flycat']
 [or scratch allow_bar]
 Yes
 [/if]
 baz: yes
 *: [data session logged_in]

The page controlled/foo is only allowed for the logged−in user flycat.
The page controlled/bar is allowed for the logged−in user flycat, or if the scratch variable
allow_bar is set to a non−blank, non−zero value.
The page controlled/baz is always allowed for display.
The page controlled/any (or any other page in the directory not named in .access_gate) will be
allowed for any user logged in via UserDB. NOTE: The .access_gate scheme is available for database
access checking if the database is defined as an AdminDatabase. The .access_gate file is located in
ProductDir.

1. If the Variable MV_USERDB_REMOTE_USER is set (non−zero and non−blank), any user logged in
via the UserDB feature will receive access to all pages in the directory. NOTE: If there is a
.access_gate file, it overrides this.

2. If the variables MV_USERDB_ACL_TABLE is set to a valid database identifier, the UserDB module
can control access with simple ACL logic. See USER DATABASE. NOTE: If there is a
.access_gate file, it overrides this. Also, if MV_USERDB_REMOTE_USER is set, this capability
is not available.

 Interchange: Interchange Back−Office

16 4.3. Controlling Access to Certain Pages

5. USERTAG REFERENCE

5.1. email

 UserTag email Order to subject reply from extra
 UserTag email hasEndTag
 UserTag email Interpolate
 UserTag email Routine <<EOR
 sub {
 my($to, $subject, $reply, $from, $extra, $body) = @_;
 my($ok);

 $subject = '<no subject>' unless defined $subject && $subject;

 $reply = '' unless defined $reply;
 $reply = "Reply−to: $reply\n" if $reply;
 if (! $from) {
 $from = $Vend::Cfg−>{MailOrderTo};
 $from =~ s/,.*//;
 }

 $extra =~ s/\s*$/\n/ if $extra;
 $ok = 0;
 SEND: {
 open(Vend::MAIL,"|$Vend::Cfg−>{SendMailProgram} −t") or last SEND;
 print Vend::MAIL
 "To: $to\n",
 "From: $from\n",
 $reply,
 $extra || '',
 "Subject: $subject\n\n",
 $body
 or last SEND;
 close Vend::MAIL or last SEND;
 $ok = ($? == 0);
 }

 if (!$ok) {
 logError("Unable to send mail using $Vend::Cfg−>{'SendMailProgram'}\n" .
 "To '$to'\n" .
 "From '$from'\n" .
 "With extra headers '$extra'\n" .
 "With reply−to '$reply'\n" .
 "With subject '$subject'\n" .
 "And body:\n$body");
 }
 $ok;
 }
 EOR

5.2. email_raw

 UserTag email_raw Documentation <<EOD

 This tag takes a raw email message, *including headers*, and
 users the SendmailProgram with −t option. Example:

 [email−raw]

5. USERTAG REFERENCE 17

 From: foo@bar.com
 To: bar@foo.com
 Subject: baz

 The text of the message.
 [/email−raw]

 The headers must be at the beginning of the line, and the header
 must have a valid To: or it will not be delivered.

 EOD

 UserTag email−raw hasEndTag
 UserTag email−raw Interpolate
 UserTag email−raw Routine <<EOR
 sub {
 my($body) = @_;
 my($ok);
 $body =~ s/^\s+//;

 SEND: {
 open(Vend::MAIL,"|$Vend::Cfg−>{SendMailProgram} −t") or last SEND;
 print Vend::MAIL $body
 or last SEND;
 close Vend::MAIL
 or last SEND;
 $ok = ($? == 0);
 }

 if (!$ok) {
 ::logError("Unable to send mail using $Vend::Cfg−>{SendMailProgram}\n" .
 "Message follows:\n\n$body");
 }
 $ok;
 }
 EOR

5.3. loc

 # [loc locale*] message [/loc]
 #
 # This tag is the equivalent of [L] ... [/L] localization, except
 # it works with contained tags
 #
 UserTag loc hasEndTag 1
 UserTag loc Interpolate 1
 UserTag loc Order locale
 UserTag loc Routine <<EOF
 sub {
 my ($locale, $message) = @_;
 return $message unless $Vend::Cfg−>{Locale};
 my $ref;
 if($locale) {
 return $message
 unless defined $Vend::Cfg−>{Locale_repository}{$locale};
 $ref = $Vend::Cfg−>{Locale_repository}{$locale}
 }
 else {
 $ref = $Vend::Cfg−>{Locale};
 }
 return defined $ref−>{$message} ? $ref−>{$message} : $message;

 Interchange: Interchange Back−Office

18 5.3. loc

 }
 EOF

♦ Akopia and Interchange are registered trademarks of Akopia, Inc. All other product names
are trademarks or registered trademarks of their respective manufacturers. This version of the
document supersedes any and all previous versions.

 Interchange: Interchange Back−Office

5.3. loc 19

 Interchange: Interchange Back−Office

20 5.3. loc

	Table of Contents
	1. AKOPIA INTERCHANGE TM BACK-OFFICE
	2. TRACKING AND BACK-END ORDER ENTRY
	2.1. ASCII Backup Order Tracking
	2.2. Database Tracking
	2.3. Custom Order Routing

	3. ADMINISTERING AKOPIA INTERCHANGE
	3.1. Starting, Stopping, and Re-starting the Servers
	3.2. UNIX and INET Modes
	3.3. User Reconfiguration
	3.4. Making the Product Database
	3.5. Updating Individual Records
	3.6. Expiring Sessions
	3.7. Administrator Permissions
	3.8. Administrators
	3.9. Administrators: Edit Affiliates
	3.10. Direct Table Edit
	3.11. Direct Table Edit: Select for Table Edit
	3.12. File Transfer
	3.13. Import/Export
	3.14. Logout
	3.15. Meta Field Information

	4. INTERCHANGE SECURITY
	4.1. SSL Support
	4.2. Administrative Pages
	4.3. Controlling Access to Certain Pages

	5. USERTAG REFERENCE
	5.1. email
	5.2. email_raw
	5.3. loc

